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Abstract—The antiviral nucleoside 3 0-a-fluoro-2 0,3 0-dideoxyguanosine (FddG) was synthesized via 3 0-a-selective fluorination of 8,2 0-
thioanhydronucleoside as the key step. Desulfurization of 3 0-a-fluoro-3 0-deoxy-8,2 0-thioanhydronucleoside could be achieved by the
treatment with Raney Ni in toluene. This method provides a concise route to 3 0-a-fluoro-2 0,3 0-dideoxynucleosides that avoids the
use of explosive and expensive SF4-related fluorinating reagents.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

3 0-a-Fluoro-2 0,3 0-dideoxyguanosine (FddG) (1, Fig. 1) is
being developed as a reverse transcriptase inhibitor of
HIV for AIDS1 as well as a potential treatment for hep-
atitis B virus infection.2 We previously reported the syn-
thesis of FddG (1) from guanosine by a 6-step sequence
with bromine rearrangement during fluorination;3 how-
ever, this method required the use of explosive and
expensive SF4-related fluorinating reagents. Although
other methods for the synthesis of FddG (1) have been
reported, they also required SF4-related reagents for
fluorination1a,4,5 and/or rather lengthy reaction steps
to be performed on an industrial scale.6 Notably, con-
ventional 3 0-a-selective fluorination of 3 0-b-hydroxy
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Figure 1. Structure of FddG 1.
derivative via SN2 inversion suffered from the
generation of 3 0,4 0-didehydro-3 0-deoxy by-products by
trans-elimination, which reduced the yield of the desired
product.1a We report here a concise synthesis of FddG
(1) via 3 0-a-selective fluorination of 8,2 0-thioanhydronu-
cleoside, which can be easily prepared from guanosine
(2).
2. Results and discussion

In contemplating the synthesis of FddG (1), we consid-
ered that 3 0-a-selective fluorination of a 2 0-substituted
2 0-deoxyguanosine derivative could be achieved with
the assistance of the neighboring effect of a hetero atom
located at the 2 0-b-position. We previously reported that
the fluorination of both 3 0-b-bromo-3 0-deoxyadenosine
(3) and 2 0-b-bromo-2 0-deoxyadenosine derivatives (4)
with a SF4-related fluorinating agent, which is crucial
for the reaction, gave 3 0-a-fluorinated compound (5) as
a major product in a ratio of 7:1 (Scheme 1).7 We con-
cluded that selective fluorination of both regioisomers
might proceed via a common bromonium ion intermedi-
ate which is attacked by the fluoride anion from the
a-side of the 3 0-position. However, the regioselectivity
was not sufficient (2.8:1) in the case of guanine ana-
logues.3 These results prompted us to examine the
fluorination of 8,2 0-thioanhydronucleoside via a sulfo-
nium ion intermediate, since we anticipated that reten-
tive fluorination might proceed by means of sulfur
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Scheme 1. Fluorination of 3 and 4.
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facilitating the attack of the fluoride ion8 to the 3 0a
rather than the 2 0a position due to possible steric
requirements. In addition, with the assistance of the
neighboring effect of the sulfur atom, elimination might
be suppressed to allow the use of a non-SF4-related
reagent such as perfluorobutanesulfonyl fluoride (NfF)
for fluorination in the presence of a base. If 3 0-a-selec-
tive fluorination could be accomplished, the sulfur atom
would be removed by treatment with Raney Ni. We
report here a successful realization of this strategy.

First, we investigated the fluorination of N2,O50 -ditrityl-
protected compound 8 (Scheme 2). Compound 8 could
be obtained in 60% yield by treatment of 8,2 0-anhy-
dro-8-mercaptoguanosine (7), which can be easily pre-
pared from guanosine (2) in 3 steps,9 with trityl
chloride in the presence of Et3N. Although the reaction
of 8 with DAST gave a complex mixture due to the
unstable nature of the trityl groups under these reaction
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Scheme 2. Synthesis of FddG 1.
conditions, in the reaction with NfF/Et3N, the desired
3 0-a-fluorinated product 9 was obtained in 63% yield
along with the elimination product 10.10 In this initial
attempt, the ratio of 9:10 was 4:1 and no generation of
2 0-a-fluorinated product was observed. After we opti-
mized the reaction conditions, we eventually found that
the yield could be improved to 91% by using an excess
amount of NfF in the presence of i-Pr2NEt as a base.11

Next, we investigated the reductive desulfurization of
3 0-a-fluoro-3 0-deoxy-8,20-thioanhydronucleoside 9. First,
we attempted the desulfurization of 8,2 0-anhydro-3 0-a-
fluoro-8-mercapto-3 0-deoxyguanosine, which can be ob-
tained by treatment of 9 with acetic acid; however, the
reaction with Raney Ni in aq NaOH only gave 2 0,3 0-
dideoxyguanosine (ddG). No generation of the desired
FddG (1) was observed in the above reaction. We sus-
pected that fluorine atom might be eliminated by the
nucleophilic attack of the sulfur atom under these highly
basic conditions to give the sulfonium ion again, which
subsequently affords ddG by the reduction with Raney
Ni. Accordingly, we tried to achieve desulfurization of
compound 9 prior to deprotection with the acid. The
reaction of 9 with Raney Ni in EtOH gave a small
amount of the desired Tr2–FddG (11)12 along with
Tr2–ddG (12) as a major product in a ratio of 1:4. The
reaction had to be performed in the presence of Et3N
to avoid the unfavorable removal of trityl groups under
the above reaction conditions. To our delight, when we
used toluene as a solvent in the presence of Et3N,
the preferential formation of Tr2–FddG (11) versus
Tr2–ddG (12) was observed. Eventually, we discovered
that the desulfurization of compound 9 with Raney Ni
in toluene without any additives gave the best ratio of
11:12 (6:1). The use of aprotic solvent such as toluene
may contribute to suppress the unfavorable removal of
trityl groups even in the absence of a base. The desired
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product 11 could be isolated in 61% yield after column
chromatography. Finally, the Tr2–FddG (11) obtained
was allowed to be deprotected under acidic conditions
to give FddG (1)13 in 69% yield.

In summary, a concise synthesis of FddG (1) using the
3 0-a-selective fluorination of 8,2 0-thioanhydronucleoside
8 has been achieved. This synthetic method using reten-
tive fluorination at the C3 0 position has the advantage of
providing FddG (1) in high yields with a safer fluorina-
tion agent, NfF. Further studies are now in progress.
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